منابع مشابه
Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones
In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...
متن کاملPositive Operator Measures, Generalised Imprimitivity Theorem and Their Applications
Introduction In the common textbook presentation of quantum mechanics the observables of a quantum system are represented by selfadjoint operators, or, equivalently , by spectral measures. The origin of this point of view dates back to the very beginning of quantum theory. Its rigorous mathematical formulation is mainly due to von Neumann [53], and, for a more recent and complete review, we ref...
متن کاملG-positive and G-repositive solutions to some adjointable operator equations over Hilbert C^{∗}-modules
Some necessary and sufficient conditions are given for the existence of a G-positive (G-repositive) solution to adjointable operator equations $AX=C,AXA^{left( astright) }=C$ and $AXB=C$ over Hilbert $C^{ast}$-modules, respectively. Moreover, the expressions of these general G-positive (G-repositive) solutions are also derived. Some of the findings of this paper extend some known results in the...
متن کاملAn Operator Corona Theorem
In this paper some new positive results in the Operator Corona Problem are obtained in rather general situation. The main result is that under some additional assumptions about a bounded analytic operator-valued function F in the unit disc D the condition F (z)F (z) ≥ δI ∀z ∈ D (δ > 0) implies that F has a bounded analytic left inverse. Typical additional assumptions are (any of the following):...
متن کاملWeyl’s Theorem for Operator Matrices
Weyl’s theorem for an operator says that the complement in the spectrum of the Weyl spectrum coincides with the isolated points of the spectrum which are eigenvalues of finite multiplicity. H. Weyl ([22]) discovered that this property holds for hermitian operators and it has been extended from hermitian operators to hyponormal operators and to Toeplitz operators by L. Coburn ([5]), and to sever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1975
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1975-0412389-8